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ABSTRACT-A one-level, global, spectral model using the of an  equivalent model based on the traditional interaction 
primitive equations is formulated in terms of a concise coefficients. The transform model, in integrations of 116 
form of the prognostic equations for vorticity and diver- days, satisfies principles of conservation of energy, 
gence. The model integration incorporates a grid transform angular momentum, and square potential vorticity to a 
technique to evaluate nonlinear terms; the computational high degree. 
efficiency of the model is found to be far superior to that 

1. INTRODUCTION 

Numerical schemes for mathematical simulation of 
atmospheric flow commonly employ one of two methods. 
The more usual approach represents the dynamic meteoro- 
logical variables in space and time on a finite-difference 
grid. An alternative method less commonly adopted rep- 
resents the variance of these fields, in part, by truncated 
spectral expansions. In  particular, a spectral representation 
for the horizontal variation of the dynamic fields over the 
globe offers a number of significant advantages. Foremost 
among these advantages is the elimination of aliasing in 
the evaluation of horizontal advection terms; in addition, 
the problems arising in global grids a t  the poles and in the 
alternative of mapping of the sphere do not occur. These 
and other advantages are well known and have been 
discussed by Platzman (1960), Icubota et al. (1961), Baer 
and Platzman (1961), Ellsaesser (1966), Robert (1966), 
Eliasen et al. (1970), and Orszag (1970). Until recently, 
these advantages have been largely overwhelmed by a 
serious problem with respect to the computational effi- 
ciency of the spectral approach in comparison to that of 
the grid method. Recently, Orszag (1970) has suggested a 
transform procedure whereby the computational efficiency 
of a spectral model can be much improved; while Eliasen 
et al. (1970) have demonstrated numerically, using a 
transform approach, that the efficiency of integration of 
the primitive meteorological equations in spectral form 
can be considerably enhanced. 

The present study suggests a simple and concise form 
of the one-level primitive equations that can be readily 
integrated via a transform procedure when one specifies 
the horizontal variance of the dynamic fields by truncated 
expansions of orthogonal spherical harmonics. The spec- 
tral representation of these equations is presented to- 
gether with results of numerical model integrations; a 
comparative study of this transform model and a model 
based on the more traditional spectral method demon- 
strates that a considerable improvement in computational 
efficiency arises from the transform technique. 

The essence of the transform procedures proposed by 
Orszag (1970) and by Eliasen et al. (1970) is to evaluate 
the nonlinear terms of the equations as simple products 
following a transform from the spectral to gridpoint 
domain; a subsequent- inverse transform yields the spec- 
tral form of the requisite nonlinear term. The procedure 
may be more generally described as combining nonlocal 
(spectral) differentiations with local (gridpoint) multi- 
plications for evaluation of the nonlinear terms. 

2. EQUATIONS OF MOTION 

The equations of motion employed to simulate 
atmospheric flow are most appropriately applied to the 
atmosphere considered in depth. However, many of the 
mathematical properties of the equations are embodied in 
a simpler set of equations that describe motion of a free 
surface of a homogenous and incompressible fluid. I t  is 
this simpler set of equations, referred to variously as the 
free-surface equations or the one-level primitive equations, 
that is considered here as a means of illustrating a 
procedure of more general application. 

The equations describing the motion of a free surface 
may be written as 

and 

where V is the horizontal wind vector with eastward and 
northward components of u and v, respectively, 9 is the 
geopotential height of the free surface, f is the Coriolis 
parameter, k is the vertical unit vector, V is the horizontal 
&-adient operator, and dfdt is the total time derivative. 

The specification of such equations in the spectral 
domain has been discussed by Robert (1966) who noted 
that the components T L  and v of the vector wind constitute 
pseudoscalar fields on the globe and as such are not well 
suited to representation in terms of scalar spectral 
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expansions. Robert suggested that the variables 

and 
u=u cos 4 

v=v cos 4, 

where 4 denotes latitude, would be more appropriate in 
the global spectral formulation. Accordingly, he performed 
a long-term integration of a mu1 tilevel primitive-equation 
model with U and V as the horizontal wind prognostics. 

The horizontal wind field may, however, be equally well 
specified in terms of horizontal divergence and the vertical 
component of relative vorticity ; these two quantities are 
scalars and are well suited as dynamic variables in a 
spectral model. On application of the curl ( k - V X )  and 
divergence operators (V ) to eq (1) , expanded to the form 

and 

where h ,  4, and t denote the independent variables 
longitude, latitude, and time, respectively; a denotes the 
radius of the earth; and Q is the rotation rate of the earth. 

The quantities U and V appearing in eq (10)-(12) are 
not prognostic variables but may be derived from the 
simple linear relationship given by eq (7). Expanding 
eq (7) yields 

(3) and 

the prognostic equations for horizontal vorticity and 
divergence are found to be 

The prognostic equations [eq (10)-(12)] together with 
the diagnostic expressions [eq (13) and (14)] constitute 
the form appropriate for the present study. 

An advantage of the equations expressed as above is 
that they are concise. The actual number of fields involved 
in nonlinear products is less than is required in the form 
that employs U and V as the wind prognostics; it should 
be noted that this comparative simplicity is gained at  the 
expense of some complexity in treating curl and divergence 
operators subsequent to formation of nonlinear products. 

aw _-- - v - @ ‘ V - Z D .  (6) The truncation procedure for these concise equations in 
at spectral form is straightforward since the prognostic 

(4) 

and 

~ = k . v . ( ( + f ) V - v 2 ( m ’ + ~ ) .  at (5) 

The continuity equation [eq (211 may be re-expressed 
form, similar to eq (4) and (5), as follows: 

variables are scalars; in addition, the implementing of a 

prognostic for divergence. 
4 is k’v ‘1 the component Of semi-implicit tirne scher,le is facilitatecl by tile 

vorticity, D is V*V, the horizontal divergence, and the 
substitution of @=F+@’ denotesa time-independent global 
mean geopotential, T ,  and the time-dependent perturba- 
tion field, a’; this substitution facilitates subsequent 
semi-implicit time integration. 

3. THE EQUATIONS OF MOTION 
IN SPECTRAL FORM 

It is convenient now to invoke the theorem of Helm- 
holtz and represent the wind vector V in terms of a stream 
function, J / ,  and a velocity potential, X ,  as 

~ V = k X v J / + v x .  (7) 

From eq (7), the quantities 
sible as 

and 

and D are seen to  be expres- 

.$= k - v  x V=v2J/ (8) 

D= v -V=V’X. (9) 

Expanding, in part, the vorticity, divergence, and con- 
tinuity equations, as given by eq (4)-(6), into spherical, 
polar coordinates, substituting U=IL cos 4 and V = v  
cos 4, and incorporating eq (S) and (9) yields 

The spectral approach has been commonly invoked to 
integrate the barotropic or nondivergent vorticity equa- 
tion, there being one dynamic variable, namely, the 
stream function. Silberman (1954) represented the global 
variance of the stream function in terms of orthogonal 
spherical harmonics and demonstrated a procedure for 
numerical integra tion of the resulting prognostic spectral 
equations. Subsequently, Platzman (1960), Kubota et al. 
(1961), Baer and Platzman (1961), and Ellsaesser (1966) 
have all employed the approach of Silberman in integra- 
tions of the vorticity equation. The transformation of the 
vorticitj- equation into the spectral domain, as used bj- 
these authors, yields prognostics for spectral amplitucle 
coefficients in terms of quadruple summations involving 
interaction coefficients. The rapid increase in the number of 
interaction coefficients as t l  function of increasing spec- 
tral resolution has been, in part, responsible for the 
inefficiency long associated with the spectral method. 

Robert has suggested use of low-order spectral func- 
tions based on nonorthogonul dements of the spherical 
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harmonics; this method has been successfully applied in a 
multilevel primitive-equation model (Robert 1966) and 
in a nondivergent vorticity model (Robert 1968). This 
approach eliminates the troublesome complexity of inter- 
action coefficients at the small expense of an orthogonali- 
zation procedure at  each time step of numerical integration. 

Eliasen et al. (1970) have demonstrated that spectral 
model integration of the primitive equations may be 
greatly facilitated by a spectral grid transform technique. 
A similar procedure has also been suggested by Orszag 
(1970) and discussed with reference to a nondivergent 
vorticity model. The essential, nontrivial aspect of a 
spectral model integration arises in evaluation of the non- 
linear products, and it is the ready simplification of these 
spectral multiplications that is possible via the transform 
method. The transform technique requires : 

1. A transform of appropriate spectral fields to  a spatial grid 
2. Multiplication of grid values point by point. 
3. An inverse transform on the product formed at gridpoints to 

revert to the spectral domain. 

Equations (10)-(12) have been derived so as to facilitate 
incorporation of a transform method in a global spectral 
model. A spectral representation of eq (10)-(12) is readily 
given in terms of orthogonal spherical harmonics as used 
by Silberman (1954). These harmonics are eigenfunctions 
of the Laplacian operator, v', and are thus appropriate 
for use in the equations as presented. Truncated expansions 
for approximating the stream function, velocity potential, 
geopotential height, and two derived wind fields are 
required. These expansions, in terms of time-dependent 
amplitudes, are 

fJ Iml+J+1 
U=a u'E"y'E"J 

m=-J 1= ml 

where 

1. The terms $7 and so forth denote time-dependent 
generally complex expansion coefficients ; the reality of the 
fields requires (+y) *= (-)"+-'E" and so forth. 

2. Yy=Py (sin +)eimx; Py (sin +) is an associated 
Legendre polynomial of the first kind (normalized to 
unity; that is? 

of degree 1 and order m. 
3. The truncation parameter, J, denotes rhomboidal 

wave number truncation (Ellsaesser 1966), m denotes a 

planetary wave number, and (I-m) denotes a meridional 
wave number. 

In  expressing the U- and V-fields spectrally, i t  is es- 
sential that these derived wind fields be identical to those 
implied by the truncated expansions for + and x. Sub- 
stitution of the expansions of eq (15) and (17) into eq 
(13) and (14) yields, on application of a standard recur- 
rence relation and the orthogonality property of the har- 
monics, the relationships 

u;.= (I- 1) €'E"$?- 1- (lf2) €;.+I+y+n+l +imxl" (18) 

v;.= - (I- 1)e;lx'E"- 1+ (lf2) €ln+n+lXln+n+l fimJ,? . (19) 
where 

E?= J(Z2--~2)/(4Z2-1). 

I t  becomes apparent from eq (18) and (19) that expansions 
for U and V must, as implied in eq (17), extend to one 
degree above that defined in eq (15) for J ,  and X; for 
example, nonzero values of U%+J+I are implied by 
variance in + ~ I + J .  

In  eq (10)-(12), the nonlinear products occurring are 
Uv2$, Vv2J,, Ua', VW, and ( Uz+V2)/2. The spectral evalu- 
ation of these nonlinear terms may be accomplished by 

1. A transfoIm of spectral fields of U, V,  V2$, and 0' to a two- 
dimensional (latitude-longitude) grid on the globe.2 

2. Evaluation of the above terms at each gridpoint. 
3. An inverse transform of these terms. 

The requisite inverse transforms involve the curl and 
divergence operators, and, as an example of the procedure, 
the vorticity equation is considered in detail below. 
Having obtained the gridpoint values of Uv'$ and Vv'J,, 
it, is appropriate to represent these gridpoint values in 
terms of truncated Fourier series at each latitudinal circle 
as follows: 

and 

Vv2+=a Bmeimh. 
m=-J 

The Fourier amplitudes A, and B, are obtained by 
inverse transformation. After substituting eq (20) together 
with (15) into the vorticity equation and again using the 
orthogonality property of the spherical harmonics, the 
spectral prognostic is seen to be, in part, a function of the 

1 There is an implication in eq (18) and (19) that is pertinent to spectral models cm- 
ployirig U and Vas prognostic variables. As Robert (1966) showed and as discussed in 
detail by Eliasen et al. ( l ! ) i O ) ,  the truncation of teiideiicies for components Vi" and Vr 
is found to be well behaved if made equivalent to a truncation of tendencies for the +and 
Wields. A satisfactory truncation for the true scalar ficlds such as + and X is achieved 
simply by evaluating tendencies only for those components initially considered in the 
expansions; such an approach in a nondivcrgcnt vorticity model conserves, apart from 
errors due to time truncation and roundoff, quadratic invariants of energy and square 
vorticity. To achieve a satisfactory truncation with LJ; and V; as prognostic variables 
one must make corrections to the highest degree coniponents for each order (Eliasen 
et al. 19iO).  

2 The approach of Eliasen et al. (lnio), employing U and V as the wind prognostics. 
employs a transform of requisite fields to a latitudinal grid only; the multiplication of 
various Fourier series is then pcrfomied spectrally. This one-dimensional transform 
achieves the primary and important aim of elimination of interaction coeffcients; a full 
two-dimensional transform is adopted in the present study and has also been employed 
by the above authors (Machenhauer 1971). 
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integral points around each latitude circle would allow alias-free 
evaluation of Fourier transforms such as occur in eq (20) 
and (22). Orszag (1971) has more recently discussed an 
improved transform procedure, as has Machenhauer 

J+''2 2 (imAm+ cos 4 - P;" (sin 4) cos &. 
-*I2 cos2 4 aBm> a4 

(1971), and it is apparent from these authors that (3J+1) 

alias-free evaluation of the Fourier transforms considered 
here. 

requirement of resolution in the meridional direction for 
performing exact integrations via Gaussian quadrature. 

In  the course Of their particular truncation procedure, equispaced longitudinal gridpoints are to Eliasen et al. (1970) show that such an integral, upon inte- 
grating the second term by parts, may be exactly evaluated 

gridpoints. The spectral form of the vorticity equation, 
therefore, may be conveniently written as 

Gaussian quadrature at a sufficient number Of Eliasen et al. (1970) have discussed in some detail the 

m +*I2 1 It is sufficient to notehere that the integrands occurring 
in eq (21), (23), (24), and (25) are polynomials of at most 
degree 55; since Gaussian quadrature applied over K 
angles is exact for any polynomial of degree less than or 
equal to (2K-l) ,  a grid of (5J+1)/2 Gaussian angles of 

-Z(Z+l) %=-J -.12 s4 [ im&P;" (sin 4) 

afl (sb4)] cos 4d4+23[l(l-1)e';Xy-l 
a4 

-Bm C O S +  

f(Z+l)(l+2)eln+,~I+~-V';l. (21) latitude is sufficient for exact integration. 

The spectral truncation of the evaluated tendencies is 
straightforward, as the variables are true scalars and 
tendencies are only required for those components within 
the spectral range defined by the truncation parameter, J. 

A similar type of integral to that in eq (21) arises in 
considering the divergence and continuity equations. 
With additional representations analogous to those of 
eq (2O), namely, 

+J 

m = - J  

+J 

m=-J 

U@'=a3 C CmefmXi 

VW =a3 C DmefmX, 
and 

u2+v2-a2 +J EmefmX, 
.- 

2 m=--J 

the tendencies for the velocity potential and geopotential 
spectral amplitudes are found to be 

and 

+ ni2 
imCmPy (sin 4) aw -=-J L[ 

at -TI2 cos2+ 

-0, COS 4 (24) 

where 

Thus, eq (21), (23), (24), and (25) constitute the requisite 
spectral form of the free-surface equations. 

For the transform procedure to be equivalent to that 
in which spectral multiplications are evaluated non- 
locally, the gridpoint multiplications must be free of 
aliasing. Orszag (1970) pointed out that 4J equispaced 
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4. NUMERICAL INTEGRATIONS 

A computer code has been developed to numerically 
integrate the spectral tendency equations [eq (21), (23), 
(24), and (25)]; the spectral truncation chosen is rhom- 
boidal as indicated in eq (15). The code has employed the 
fast-Fourier transform subroutine of Brenner (1969) and 
the procedures of Belusov (1962) for generating the 
requisite associated Legendre polynomials. The advantages 
inherent in usage of a fast-Fourier algorithm have been 
discussed by Orszag (1970). The time integration is 
implemented by the standard leapfrog scheme with, 
however, @? of eq (23) and x? of eq (24) considered 
implicitly; this semi-implicit method developed by Robert 
(1969) permits, a t  the expense of inaccuracies in the 
phase speed of gravity waves, a time step of approximately 
six times the value acceptable in a fully explicit approach. 
A modified Euler-backward time step (Kurihara 1965) 
provides a smooth start and also removes the computa- 
tional mode when periodically applied. 

A first evaluation of the model, coded as above, employed 
the initialization procedure suggested by Phillips (1959) ; 
the stream function was specified in terms of a particular 
analytic solution of the nondivergent vorticity equation 
with the geopotential corresponding to the solution of the 
reverse nonlinear balance equation. In a divergent model, 
as considered here, i t  is expected that the solution of the 
equations will differ, at least initially, only slightly from 
the analytic nondivergent case. In particular, as also 
found by Grimmer and Shaw (1967), the numerically cal- 
culated phase speed is found to be a little less than that of 
the analytic solution. With similar initialization and 
constants as Grimmer and Shaw (1967), a numerical 
integration (J= 10) over a period of 96 hr yielded a phase 
speed of 9.2'fday. The analytic solution yields a phase, 
speed of 9.6'fday. 

A more appropriate test of the numerical integrations is 
provided on initializing the dynamic fields with real data 
and thereby allowing the nonlinear terms realistic sig- 
nificance. Correspondingly, all subsequently described 
numerical integrations have been performed with an initial 
global stream function, as given in the spherical harmonic 



TABLE 1.-Transform model timing 

Transform grid Wave number 
truncation, J 
(rhomboidal) Number of Number of points time/time Step (s) 

Gaussian latitudes per latitude circle 

Computation 

- 

7 20 24 2. 3 
12 32 48 7. 8 
15 40 48 12. 2 
24 64 96 39 
30 80 96 67 

TABLE 2.-Interaction coeflcient timing 

Wave number truncation, Number of Computation 
J (rhomboidal) interaction coefficients. timeltime step (s) 

5 3,657 1. 1 
7 16,250 4. 2 

10 83, 169 18. 6 

15 558,276 114 
13 283,577 59 

'Comprising interaction coefficients arising from scalar triple products and from ordi 
nary products 

analysis of Merilees (1968~) for the 500-mb IGY data. 
With the stream function so specified, a geopotential field 
can be derived by imposing the balance condition aD/at= 0;  
as the semi-implicit time scheme is being used, a first time 
step correction yields slightly better balance of the fields. 

The overall efficiency of the transform model was of 
prime interest, and the computation time per time step 
was measured as a function of the wave number truncation 
parameter, J. For comparative purposes, the same 
information was measured for integrations of an equivalent 
free-surface model formulated in terms of the fully 
differentiated equations and requiring interaction 
coefficients. This interaction coefficient model has been 
coded by the author, as with the transform model, with 
the same limited degree of coding optimization; the 
formulation was based on that given by Merilees (19683) 
for the primitive meteorological  equation^.^ Table 1 
displays timing information for the transform model and 
the corresponding resolution of the transform grids. Table 
2 displays timing information for the interaction coeacient 
model and the number of requisite interaction coefficients. 
These timing results are all graphed in figure 1. A consider- 
able gain in efficiency is apparent from use of the transform 
approach; the interaction coefficient model displays the 
well-known increase in the number of requisite inter- 
action coefficients and corresponding catastrophic loss of 
efficiency as a function of increasing spectral resolution. 
The t h i n g  for the interaction Coefficient model was 
derived from calculations in which one constant inter- 
action coefficient was continually accessed; the model has 

3 The evaluation of nonlinear terms in the interaction coefficient model incorporated the 
procedure of Baer and Platzman (1961) but with the minor omission of the economy 
available in explicit storage of the four-component multiplications implied by multiplica- 
tion of two complex amplitudes. The prognostic equations were manipulated to contain 
interaction coefficients corresponding to scalar triple products and ordinary products; 
use of appropriate selection rules eliminated the majority of null interactions. 
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FIGURE 1.-Computation time per time step (s) as a function of 
spectral resolution. Integrations of a global spectral model 
employing a transform method and employing the interaction 
coefficient method are compared. 

been correctly integrated for J I l O ,  but the number of 
coefficients becomes prohibitive in a real calculation for 
J> 10. 

The limitation of the efficiency of the transform model 
with increasing spectral resolution is related to  the time 
required to perform transforms of the associated Legendre 
expansions. The ratio of computation time required for 
Fourier transforms to that required for Legendre trans- 
forms decreases from 1.0 at truncation of J = 1 5  to 0.5 at  
truncation of J=30; the lack of a fast algorithm to 
perform the Legendre transforms is becoming apparent a t  
J= 30. 

Both models considered here employed level-H Fortran 
and were run on an IBM 360165 computer having 
available 200,000 bytes of core; the codes employ single 
precision arithmetic, although the requisite associated , 

Legendre polynomials are generated in double precision 
for the transform model at  each time step. 

The free-surface equations denoted by eq (1) and (2) 
embody, among others, principles of conservation of 
energy, angular momentum, and square potential vor- 
ticity. The extent to which the numerical model integra- 
tions satisfy such principles has long been a criterion in 
evaluating the stability, not to be confused with accuracy, 
of various numerical schemes. These conservation princi- 
ples may be expressed as constraints on the integrals over 
the mass field of the fluid for the quantities, given per unit 
mass. of 

U2+V2+9,, energy =- 2 cos2 #I 

angular momentum =a (U+n a cos2 #I), 
and 

square potential vorticity =gz 

4 Mention of a commercial product does not constitute an endorsement. 
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The conservation of mass in the present spectral model is 
implicit, as the tendency of the global mean geopotential 
field is identically zero. 

As a more extensive test of the transform model, two, 
long-term numerical integrations have been performed. 
These integrations have been performed with a spectral 
truncation of wave number J=15;  the global 500-mb 
spectral analysis of Merilees (1968~) provided the stream 
function a t  resolution of J= 15. The geopotential field 
obtained by initializing the model is a little removed 
from reality-the initial stream function was obtained 
through a spectral form of the linear balance equation 
and, for the present purposes, this stream function was 
used in the reverse nonlinear balance equation to generate 
a balanced geopotential. The two calculations were both 
initialized with the stream function from the global 
spectral analysis for Sept. 6, 1957 ; these two calculations, 
subsequently denoted by A and B, differed only in that 
mean free-surface heights of 1.5 and 5.4 km, respectively, 
were employed. In  both A and B, the transform grid was 
defined by 64 points around each of 40 Gaussian latitudes; 
a semi-implicit time scheme permitted 1-hr time steps, 
and a modified Euler-backward time step (Kurihara 
1965) was applied once at  8-day intervals in A and a t  
4-day intervals in B to remove the computational mode. 

During the 116-day period, the principles of conserva- 
tion of available energy, angular momentum, and square 
potential vorticity were well satisfied. Figure 2 displays 
the energetics of both integrations, at 1-day intervals, 
for the 116-day period. The global integrals of available 
energy, angular momentum, and square potential vor- 
ticity varied in the 116-day period by f2, -0.01, and 
-4 percent, respectively, in A, and by -3, +0.4, and 
-0.7 percent, respectively, in B. In evaluation of the 
kinetic energy integral, E? is truncated prior to  integra- 
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tion over the mass field; evaluation of square potential 
vorticity is obtained from an inverse transform of grid- 
point values to avoid an explicit spectral division. As a 
measure of the extent to which divergence had developed 
in the model, the ratio of the root-mean-square (rms) 
amplitude of divergence to the rms amplitude of vorticity 
was calculated; in A this ratio grew to 5.5 percent and 
in B, to 3 percent. The differing behavior of the energy 
conversions in these two calculations is consistent with 
enhancement of divergence arising in A; the extent to 
which energy conversions may be influenced by semi- 
implicit time integration remains to be examined. 

As already discussed, the numerical integration of a 
nondivergent barotropic spectral model can exactly 
conserve, apart from small errors arising from roundoff 
and time truncation, the quadratic invariants such as 
energy and square vorticity. Whether or not exactness of 
related constraints applies in the divergent barotropic 
(i.e., the free-surface) spectral model requires further 
analysis as the constraints reduce to integrals of greater 
complexity than quadratic and for which the presently 
adopted truncation scheme may strictly be less appropri- 
ate. However, it has been found in the present study 
and by Eliasen et al. (1970) that such integral constraints 
in practice are satisfied to a high degree in a divergent 
barotropic spectral model. 

5. CONCLUSIONS 

The recently suggested principle of evaluating nonlocal 
spectral products in local gridpoint space (Orszag 1970, 
Eliasen et al. 1970) considerably enhances the efficiency 
of numerical integration of the free-surface equations via 
the spectral method. In  comparison to the more tradi- 
tional spectral method, it has been shown that an order- 
of-magnitude improvement in efficiency is obtained by 
the transform method even at relatively low spectral 
truncation of wave number 15. In  addition, the capability 
of the spectral method has been considerably enlarged by 
this development, as much higher spectral resolution is 
now feasible. 

The present study has presented a concise form of the 
set of free-surface (primitive) equations that may be 
readily transformed and integrated in the spectral domain. 
long-term integration of these equations was found to be 
stable, satisfying to a high degree several of the conserva- 
tion principles embodied in the differential equations. 
Both a semi-implicit time scheme and the spectral trun- 
cation of the tendency fields are readily implemented 
with the equations in the form suggested. The extension 
of the present formulation to a multilevel primitive equa- 
tion model of atmospheric flow does not appear to present 
major difIiculties, and a five-level n-coordinate model has 
been coded and is currently being tested. The use of a 
three-dimensional grid at an intermediate point in each 
time step of the integration should facilitate the inclusion 
of effect; that are not so readily treated in the spectral 
domain such as moisture and radiation. 
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PICTURE OF THE MONTH 
Spring Ice Migration Near Newfoundland 
FRANCES C. PARMENTER-Applications Group, National Environmental Satellite 
Service, NOAA. Suitland, Md. 

Satellite data has long been used for snow and ice 
surveillance. During spring 1972, satellites observed the 
formation, changes, and breaking-up of the pack ice 
along the Labrador Coast. According to the U.S. Naval 
Oceanographic Office (1972) and Kniskern (1972) , the 
pack ice extended further south and east this year than 
at  any other season during the last 20 yr. This year's 
increase in pack ice was attributed to the lower than 
normal (4-6OF below normal) temperatures during the 
winter and spring. A record accumulation of ice, 32 in. 
thick, was reported at  St. Anthony, Newfoundland, in 
March. 

This sequence of Automatic Picture Transmission 
(APT) photographs shows the changes in the ice along the 
north and east side of Newfoundland. On May 3 (fig. l ) ,  an 
area of snow-covered ice (H-I-J) extended southeastward 
along the western shore of the Davis Strait to 47OW, east 
of Cape Bonavista. There appears to be no ice immediately 
along the coast in White or Notre Dame Bays (G). This 

FIGURE 1.-ESSA 8 photograph, orbit 15503 on May 3, 1972, at 
1433 GMT. 
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ice became detached by the strong winds associated with 
a Low passage on the preceding day. 

Another area of thin, grayer looking ice can be seen 
between Newfoundland and Anacosti Island (K-L) . 
During the next 9 days, this ice decreased in size, leaving 
only a small area visible near shore on May 12 (K, fig. 2).  
Strong winds, associated with another Low that passed 
directly over Newfoundland, have changed the configura- 
tion of the south end or string of ice in figure 2. Northerly 
winds pushed ice westvard into White Bay (G) and strong 
southerly winds east of the island moved the ice northward 
between I and J (fig. 2). 

More moderate weather dominated the region during 
the following 2 weeks. Southerly flow predominated, 
and a warming trend with temperatures in the 50s was 
reported. In  the APT photograph taken on May 25 (fig. 
3), the string of ice (I-J) had moved south and east of its 
earlier position as a result of advection by the southward 
flowing Labrador Current. Ice still remained along the 
shore in White and Notre Dame Bays. 

On May 26 another intense Low passed over Newfound- 
land, bringing strong northerly winds over the area. The 
string of ice (I-J) seen in figure 4 continued to move 
southward, but some thinner spots began to appear near L. 

FIQURE 2.-ESSA 8 photograph, orbit 15616 on May 12, 1972, at 
1435 OMT. 



Fr QURK 3.-ESSA 8 photograph, orbit 15779 on May 25, 1972, 
1417 QMT. 

at 

FIGURI. 5.-ESSA 8 photograph, orbit 158.54 on May 31, 1972, at 
1340 GMT. 

The farthest, southern extent, of the ice was seen on 
Mtiy 31. The string of snow-covered ice (I-J, fig. 5 )  can 
be seen through ti thin overcast of low douds. Heavier 
cloud cover prevented further satellite observtition of the 
ice after that date. 

Satellites continue to provide ice inforination to users 
throughout the world. In addition to tlir Arctic example 
shown here, satellite cliitti is being used in the Pacific for 
Alaskan shipping and in t,he Antarctic for resupply 
missions. 
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